C. U. SHAH UNIVERSITY Winter Examination-2021

Subject Name: Elements of Solid State Physics

Subject Code:	5SC03ESP1	Branch: M.Sc. (Physics)		
Semester: 3	Date: 13/12/2021	Time: 02:30 To 05:30	Marks: 70	

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION _ I

		SECTION -1	
Q-1		Attempt the Following questions.	(07)
	a)	What is called Point defect?	01
	b)	What is F-centre?	01
	c)	Define dislocations.	01
	d)	Draw (211) miller indice.	01
	e)	Plot phonon dispersion curve for diatomic molecule.	01
	f)	Define: effective mass.	01
	g)	Define: Unit cell.	01
Q-2		Attempt all questions	(14)
	a)	Describe the Bloch theorem.	04
	b)	If the energy required to create vacancy in a metal is 1 eV, calculate the	03
		ratio of vacancies in metal at 1000 K and 500 K.	
	c)	Explain in brief Kroning Penny model.	07
		OR	
Q-2		Attempt all questions	(14)
	a)	State and explain the Schrodinger wave equation.	04
	b)	Formula of nickel oxide with metal deficiency in its crystal is $Ni_{0.98}O$.	03
		The crystal contains Ni ²⁺ and Ni ³⁺ ions. Find the fraction of Nickel	
		existing as Ni^{2+} ions in the crystal.	
	c)	Derive an expression of dispersion relation of lattice vibrations in	07
		monoatomic lattices.	
Q-3		Attempt all questions	(14)
	a)	Explain Schottky and Frenkel defect in brief.	07
	b)	Explain: Reciprocal lattice of fcc.	07
		OR	

Q-3 a) Differentiate Conductor, Semi-conductor and inst	ulator. 05
---	-------------------

	b)	A particle limited to the x-axis has the wave function Ψ = ax between x = 0 and x= 1; elsewhere. What is the probability that the particle can be	03
		found between $x = 0.45$ and $x = 0.55$?	
	c)	Explain first brillouin zone of sc lattice.	06
		SECTION – II	
Q-4		Attempt the Following questions.	(07)
	a)	Give the examples of antiferromagnetism.	01
	b)	What do you mean by piezoelectricity?	01
	c)	What is the formula of Bohr magneton?	01
	d)	Define Electrical susceptibility.	01
	e)	What are the examples of polar molecules?	01
	f)	What is the formula of larmor frequency?	01
	g)	Define: Domains.	01
Q-5		Attempt all questions	(14)
	a)	What is called polarization? Give its type. Explain in detail orientational polarization.	07
	b)	Explain the Weiss theory of ferromagnetism.	07
		OR	
Q-5	a)	Explain Langevin's theory of diamagnetism.	07
-	b)	State and explain Clausius- Mossoti relation in terms of dielectric and polarizability.	07
Q-6		Attempt all questions	(14)
C	a)	Explain the Larmor precession phenomena of diamagnetic material.	05
	b)	The static dielectric constant of water is 8.1 and its refractive index is 1.33. Calculate the percentage contribution of ionic polarizability.	03
	c)	Explain: Hysterisis loop.	06
	~	OR	
Q-6		Attempt all Questions	
	a)	Explain in details Local electric field of an atom.	07
	b)	Explain Quantum theory of paramagnetism.	07

